An EEG-Based Person Authentication System with Open-Set Capability Combining Eye Blinking Signals
نویسندگان
چکیده
The electroencephalogram (EEG) signal represents a subject's specific brain activity patterns and is considered as an ideal biometric given its superior forgery prevention. However, the accuracy and stability of the current EEG-based person authentication systems are still unsatisfactory in practical application. In this paper, a multi-task EEG-based person authentication system combining eye blinking is proposed, which can achieve high precision and robustness. Firstly, we design a novel EEG-based biometric evoked paradigm using self- or non-self-face rapid serial visual presentation (RSVP). The designed paradigm could obtain a distinct and stable biometric trait from EEG with a lower time cost. Secondly, the event-related potential (ERP) features and morphological features are extracted from EEG signals and eye blinking signals, respectively. Thirdly, convolutional neural network and back propagation neural network are severally designed to gain the score estimation of EEG features and eye blinking features. Finally, a score fusion technology based on least square method is proposed to get the final estimation score. The performance of multi-task authentication system is improved significantly compared to the system using EEG only, with an increasing average accuracy from 92.4% to 97.6%. Moreover, open-set authentication tests for additional imposters and permanence tests for users are conducted to simulate the practical scenarios, which have never been employed in previous EEG-based person authentication systems. A mean false accepted rate (FAR) of 3.90% and a mean false rejected rate (FRR) of 3.87% are accomplished in open-set authentication tests and permanence tests, respectively, which illustrate the open-set authentication and permanence capability of our systems.
منابع مشابه
An Experimental Study on Blinking and Eye Movement Detection via EEG Signals for Human-Robot Interaction Purposes Based on a Spherical 2-DOF Parallel Robot
Blinking and eye movement are one of the most important abilities that most people have, even people with spinal cord problem. By using this ability these people could handle some of their activities such as moving their wheelchair without the help of others. One of the most important fields in Human-Robot Interaction is the development of artificial limbs working with brain signals. The purpos...
متن کاملAn Eye Blinking Artifact Rejection Method Using Single-Channel Electroencephalographic Signals and 2 Step Non-Negative Matrix Factorization
Many biological signal analyses have been proceeded in various research fields. In particular, electroencephalographic (EEG) signal analyses have attracted attention because the EEG signal includes a mixture of endogenous brain activities. However, the EEG signal is often mixed physiological artifacts such as the eye blinking, oculogyration, heart beat, or muscle activity. Specifically, humans ...
متن کاملA New EEG Acquisition Protocol for Biometric Identification Using Eye Blinking Signals
In this paper, a new acquisition protocol is adopted for identifying individuals from electroencephalogram signals based on eye blinking waveforms. For this purpose, a database of 10 subjects is collected using Neurosky Mindwave headset. Then, the eye blinking signal is extracted from brain wave recordings and used for the identification task. The feature extraction stage includes fitting the e...
متن کاملReal–Time Low–Latency Estimation of the Blinking and EOG Signals
Electrooculography biosignals (EOG) are very important for the eye orientation and eyelid movements (blinking) estimation. There are many applications of the EOG signals. Most important applications are related to the medical applications [Duchowski (2007)]. The EOG signal is used for the analysis of eye movement in the selected medical test of the eye related health problems. It is also import...
متن کاملA Fuzzy-Based Fusion Method of Multimodal Sensor-Based Measurements for the Quantitative Evaluation of Eye Fatigue on 3D Displays
With the rapid increase of 3-dimensional (3D) content, considerable research related to the 3D human factor has been undertaken for quantitatively evaluating visual discomfort, including eye fatigue and dizziness, caused by viewing 3D content. Various modalities such as electroencephalograms (EEGs), biomedical signals, and eye responses have been investigated. However, the majority of the previ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2018